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Wavelet-Based Adaptive Solution for the
Nonuniform Multiconductor Transmission Lines

S. Grivet-Talocia and F. Canaverblember, |IEEE

Abstract—A time-domain technique for the solution of arbi- time advances. Given a fixed accuracy, the solution is stored
trary nonuniform multiconductor transmission lines (NMTL’s)  with the fewest possible wavelet expansion coefficients, which
is presented. The technique is based on a weak formulation 5r6 the only ones used for the actual calculations. This results

of the NMTL equations obtained through spatial expansion of . I tati | effort in the det inati fth
the voltage and current vectors into biorthogonal wavelet func- In-a small computational effort in thé determination of the

tions. Wavelets allow adaptive representations of the solution by Solution compared to intrinsically nonadaptive methods like
using few expansion coefficients, with any fixed approximation FDTD. In addition, the weak formulation of the NMTL

order. The set of significant expansion coefficients is determined equations allows the treatment of arbitrary lines with even
automatically from the solution, which can be computed very varying phase speed. The accuracy of other methods like
efficiently. A numerical example illustrates the high adaptivity of . o .
the method. FDTD is severely limited for such structures by numerical

o o _ dispersion.
Index Terms—Distributed parameter circuits, multiconductor
transmission lines, time domain analysis, wavelet transforms.
Il. WAVELET BASIS

Given a functionv € L? defined on a domaif? C R, we

) . . ) can introduce a sequence of approximation spaces
ANY interconnections of practical interest are char-

acterized by cross sections which are not translation- VieC---CV;CV,nC---C Vs, C L?

invariant. Examples can be impedance matching networks or
cables in complex geometries, like automobiles or airplandddexed by arefinement levej. Increasing values of define
The nonuniform multiconductor transmission lines (NMTL'spPetter and better approximations of the initial functionw.
represent a good model for the simulation of the electrichl the following, the levelsj, and ./ define the coarsest and
behavior of these structures, avoiding the need for full-waf@est approximations, respectively.
simulations based on method of moments (MoM), finite differ- The basic idea behind wavelets is to express the approxi-
ence time domain (FDTD), or finite-element method (FEM)Nationv, through ahierarchical representation, obtained by
This applies of course only when the longitudinal variatiordecomposing the spade; into a coarse approximation space
are not too large, so that the quasi-TEM mode assumptibin Plus some detail spaces’;:
remains applicable. J_1
. This Iettgr presents a novel method for the transient simula- V=V, @ @ W (1)
tion of arbitrary lossy NMTL structures. The method is based
on a weak formulation of the NMTL equations, which leads
to a class of numerical schemes of different approximation The basis functiong;, of these detail spacé¥’; are called
order according to the particular choice of some trial anlavelets while the basis functionsy;; of the approxima-
test functions. We will use wavelet functions because tfi@n spacesl; are calledscaling functions Note that these
waveforms of high-speed digital signals can be representédictions are labeled by two indexes, the first representing
with small approximation errors and very few expansiofiie refinement level and the second distinguishing different
coefficients in a wavelet basis. The optimal sparsity of waveltnctions at the same level.
representations is indeed a well-known result from the theoryThe advantage of this decomposition is that a good approx-
of nonlinear approximations [1]. As the spatial domain ignation of v can be obtained by simply adding to a coarse
intrinsically bounded, we will use biorthogonal boundarg@pproximationv;, some detail functions. However, not all
adapted wavelets constructed from B-spline functions. THee details need to be added, but only those leading to an
details of this construction can be found in [2], while the maiiinprovement in the approximation error. The theory shows
properties are listed in the next section. that the location and the number of needed details can be

The main advantage of the numerical scheme is that tAgtomatically determined by looking at the magnitude of the
representation of the solution is automatically adapted whis@velet expansion coefficients. In summary, we will use the

representation

I. INTRODUCTION
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where few coefficientsv;; are effectively used in the super-
position. The cutoff criterion is absolute thresholding, i.e., a
term is retained only ifw;z| > e. The particular value of
tunes the accuracy of the representation.

The scaling functions and wavelets can be orthogonal, with
the decomposition of (1) obtained through orthogonal sums,
This setting is widely used in the literature [3]. However,
it can be shown that orthogonal wavelets cannot be at th
same time symmetric and compactly supported [4]. Symmetry
is convenient for the implementation of numerical schemes
while a compact support is essential when complicated bound
ary conditions are to be enforced. These two features can he
recovered if orthogonality is released in favor of the more
general bi-orthogonality [4]. This requires to introduce dual
scaling functionsg;; and Wavelets/;jk, mainly used for the
computation of the expansion coefficients in (2).

11

I1l. M ATHEMATICAL FORMULATION
Let us consider the NMTL equations

g g
> V(z,t) =—L(z) a[(z,t) — R(z)I(z,1) Fig. 1. Structure of the system matdk stemming from the wavelet spatial
é 9 discretization of the NMTL equations.
I(zvt) = —C(Z) a V(Z, t) - G(Z)V(zv t) (4)
with V(z,¢) and I(z,t) indicating the voltage and current 25
vectors at locationz and timet¢. The line is assumed to
have P 4+ 1 conductors, and the per-unit-length parameters 2F
L(z),C(z), R(z), andG(z) are P x P matrices whose entries e
are arbitrary functions of the space variableWithout loss 1.5k RN

of generality we will consider the length of the line to be
normalized, i.e.z € [0, 1]. For simplicity, the line is supposed
here to be terminated by €kénin loads

V(0,t) =Vs(t) — RsI(0,%)
V(1,t) =V o(t) + RpI(1,%). 5)

The approximate voltages and currents along the line are
sought for in terms of expansion coefficients in the hierarchical _
basis functions of (2). We collect all these coefficients into ' .
the vectorz(t). Testing the equations with the dual scaling Time [s]
functlons{%mk} and Vyave!ets{z/}_jk} .Ieads toa Se_t Qf ODE'’s Fig. 2. \oltage at the left (solid line) and right (dashed line) terminations of
I’epl’esentlng the Spatla| d|Scret|Zat|0n Of the Or|g|nal NMTb line with exponentia”y decreasing phase speed,
equations. A straightforward substitution allows to incorporate

the load equations (5) in the system by eliminating the border
IV. NUMERICAL RESULTS

voltage coefficients in favor of the border current coefficients.
This operation is only possible when the basis functions A validation of the TDSE method through a detailed anal-

are boundary adapted [5]. The final system of ODE’s, aftgsis of the approximation errors can be found in [S] and [7],
explicitation of the time derivatives, reads and will not be repeated here. This section shows instead
d the simulation of a lossless line with nonuniform propagation
pr z(t) = Px(t) + I'sVs(t) + I'Vi(t). (6) speed in order to point out the high adaptivity of the proposed
) ] ] ) . scheme. The (normalized) per-unit-length parameters are as

This can be solved with a suitable integration method. Wgjows:
used here a fifth-to-sixth-order Runge—Kutta scheme [6].

The typical structure of the system matdxis depicted in
Fig. 1. This matrix is highly sparse. In addition, the aruais L(z) = 4% HIm, C(z) =1 FIm.
also highly sparse, because many of the wavelet coefficients

result below the thresholkdand are disregarded. Therefore, the
product®z can be computed very efficiently with an optimized These parameters lead to an exponentially increasing nom-
code. inal characteristic impedance (from 1 up tof2 and to an

Voltage [V]
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1-V step function with rise time equal to 0.3 s. The resulting
voltages at the left and right terminations are plotted in Fig. 2,
while the location of the significant wavelet coefficients (using
a thresholde = 107%) is plotted in Fig. 3. It should be
noted that these coefficients trace the characteristic curves of
the transmission line equations, tracking the location of the
singularities (i.e., the points where the derivative of voltage
and current is discontinuous). These curves are significantly
bent, with a tangent at a fixedequal to£1/1(z). The figure
clearly shows the sparsity in the overall representation of the
solution and the high adaptivity of the method.
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